Targeting HIV proteins to the major histocompatibility complex class I processing pathway with a novel gp120-anthrax toxin fusion protein.
نویسندگان
چکیده
A challenge for subunit vaccines whose goal is to elicit CD8(+) cytotoxic T lymphocytes (CTLs) is to deliver the antigen to the cytosol of the living cell, where it can be processed for presentation by major histocompatibility complex (MHC) class I molecules. Several bacterial toxins have evolved to efficiently deliver catalytic protein moieties to the cytosol of eukaryotic cells. Anthrax lethal toxin consists of two distinct proteins that combine to form the active toxin. Protective antigen (PA) binds to cells and is instrumental in delivering lethal factor (LF) to the cell cytosol. To test whether the lethal factor protein could be exploited for delivery of exogenous proteins to the MHC class I processing pathway, we constructed a genetic fusion between the amino-terminal 254 aa of LF and the gp120 portion of the HIV-1 envelope protein. Cells treated with this fusion protein (LF254-gp120) in the presence of PA effectively processed gp120 and presented an epitope recognized by HIV-1 gp120 V3-specific CTL. In contrast, when cells were treated with the LF254-gp120 fusion protein and a mutant PA protein defective for translocation, the cells were not able to present the epitope and were not lysed by the specific CTL. The entry into the cytosol and dependence on the classical cytosolic MHC class I pathway were confirmed by showing that antigen presentation by PA + LF254-gp120 was blocked by the proteasome inhibitor lactacystin. These data demonstrate the ability of the LF amino-terminal fragment to deliver antigens to the MHC class I pathway and provide the basis for the development of novel T cell vaccines.
منابع مشابه
A fragment of anthrax lethal factor delivers proteins to the cytosol without requiring protective antigen.
Anthrax protective antigen (PA) is a 735-aa polypeptide that facilitates the exit of anthrax lethal factor (LF) from the endosome to the cytosol where the toxin acts. We recently found, however, that a fusion protein of the detoxified N-terminal domain of lethal factor (LFn) with a foreign peptide could induce CD8 T cell immune responses in the absence of PA. Because CD8 T cells recognize pepti...
متن کاملBoth CD4+ and CD8+ T cells respond to antigens fused to anthrax lethal toxin.
The lethal toxin produced by Bacillus anthracis is a bipartite toxin in which the first protein, protective antigen (PA), transports the second protein, lethal factor, across the host cell membrane. We have previously shown that CD8(+) T-cell epitopes fused to a nontoxic derivative of lethal factor (LFn) are delivered into the host cell cytosol in a PA-dependent manner. Delivery of these antige...
متن کاملIn Silico Prediction of B-Cell and T-Cell Epitopes of Protective Antigen of Bacillus anthracis in Development of Vaccines Against Anthrax
Protective antigen (PA), a subunit of anthrax toxin from Bacillus anthracis, is known as a dominant component in subunit vaccines in protection against anthrax. In order to avoid the side effects of live attenuated and killed organisms, the use of linear neutralizing epitopes of PA is recommended in order to design recombinant vaccines. The present study is aimed at determining the dominant epi...
متن کاملIntracellular delivery of a cytolytic T-lymphocyte epitope peptide by pertussis toxin to major histocompatibility complex class I without involvement of the cytosolic class I antigen processing pathway.
A CD8(+) cytolytic T-lymphocyte (CTL) response to antigen-presenting cells generally requires intracellular delivery or synthesis of antigens in order to access the major histocompatibility complex (MHC) class I processing and presentation pathway. To test the ability of pertussis toxin (PT) to deliver peptides to the class I pathway for CTL recognition, we constructed fusions of CTL epitope pe...
متن کاملIncreased Generation of HIV-1 gp120-Reactive CD8+ T Cells by a DNA Vaccine Construct Encoding the Chemokine CCL3
DNA vaccines based on subunits from pathogens have several advantages over other vaccine strategies. DNA vaccines can easily be modified, they show good safety profiles, are stable and inexpensive to produce, and the immune response can be focused to the antigen of interest. However, the immunogenicity of DNA vaccines which is generally quite low needs to be improved. Electroporation and co-del...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 94 22 شماره
صفحات -
تاریخ انتشار 1997